FP3 Groups

1. June 2010 qu. 2

A multiplicative group with identity e contains distinct elements a and r, with the properties $r^{6}=e$ and $a r=r^{5} a$.
(i) Prove that $r a r=a$.
(ii) Prove, by induction or otherwise, that $r^{n} a r^{n}=a$ for all positive integers n.
2. June 2010 qu. 8

A set of matrices M is defined by
$A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), B=\left(\begin{array}{cc}\omega & 0 \\ 0 & \omega^{2}\end{array}\right), C=\left(\begin{array}{cc}\omega^{2} & 0 \\ 0 & \omega\end{array}\right), D=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), E=\left(\begin{array}{cc}0 & \omega^{2} \\ \omega & 0\end{array}\right), F=\left(\begin{array}{cc}0 & \omega \\ \omega^{2} & 0\end{array}\right)$,
where ω and ω^{2} are the complex cube roots of 1 . It is given that M is a group under matrix multiplication.
(i) Write down the elements of a subgroup of order 2.
(ii) Explain why there is no element X of the group, other than A, which satisfies the equation $X^{5}=A$.
(iii) By finding $B E$ and $E B$, verify the closure property for the pair of elements B and E.
(iv) Find the inverses of B and E.
(v) Determine whether the group M is isomorphic to the group N which is defined as the set of numbers $\{1,2,4,8,7,5\}$ under multiplication modulo 9 . Justify your answer clearly.
3. Jan 2010 qu. 2
H denotes the set of numbers of the form $a+b \sqrt{5}$, where a and b are rational. The numbers are combined under multiplication.
(i) Show that the product of any two members of H is a member of H.

It is now given that, for a and b not both zero, H forms a group under multiplication.
(ii) State the identity element of the group.
(iii) Find the inverse of $a+b \sqrt{5}$.
(iv) With reference to your answer to part (iii), state a property of the number 5 which ensures that every number in the group has an inverse.

4. Jan 2010 qu. 8

The function f is defined by $\mathrm{f}: x \mapsto \frac{1}{2-2 x}$ for $x \in \mathbb{R}, x \neq 0, x \neq \frac{1}{2}, x \neq 1$. The function g is defined by $\mathrm{g}(x)=\mathrm{ff}(x)$.
(i) Show that $\mathrm{g}(x)=\frac{1-x}{1-2 x}$ and that $\operatorname{gg}(x)=x$.

It is given that f and g are elements of a group K under the operation of composition of functions. The element e is the identity, where e : $x \mapsto x$ for $x \in \mathbb{R}, x \neq 0, x \neq \frac{1}{2}, x \neq 1$.
(ii) State the orders of the elements f and g.
(iii) The inverse of the element f is denoted by h . Find $\mathrm{h}(x)$.
(iv) Construct the operation table for the elements $\mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}$ of the group K.
5. June 2009 qu. 2

It is given that the set of complex numbers of the form $r \mathrm{e}^{\mathrm{i} \theta}$ for $-\pi<\theta \leq \pi$ and $r>0$, under multiplication, forms a group.
(i) Write down the inverse of $5 \mathrm{e}^{\frac{1}{3} \pi i}$.
(ii) Prove the closure property for the group.
(iii) Z denotes the element $\mathrm{e}^{\mathrm{i} \gamma}$, where $\frac{1}{2} \pi<\gamma<\pi$. Express Z^{2} in the form $\mathrm{e}^{\mathrm{i} \theta}$, where $-\pi<\theta<0$.
6. June 2009 qu. 8

A multiplicative group Q of order 8 has elements $\left\{e, p, p^{2}, p^{3}, a, a p, a p^{2}, a p^{3}\right\}$, where e is the identity. The elements have the properties $p^{4}=e$ and $a^{2}=p^{2}=(a p)^{2}$.
(i) Prove that $a=p a p$ and that $p=a p a$.
(ii) Find the order of each of the elements $p^{2}, a, a p, a p^{2}$.
(iii) Prove that $\left\{e, a, p^{2}, a p^{2}\right\}$ is a subgroup of Q.
(iv) Determine whether Q is a commutative group.
7. Jan 2009 qu. 1

In this question G is a group of order n, where $3 \leq n<8$.
(i) In each case, write down the smallest possible value of n :
(a) if G is cyclic,
(b) if G has a proper subgroup of order 3,
(c) if G has at least two elements of order 2 .
(ii) Another group has the same order as G, but is not isomorphic to G. Write down the possible value(s) of n.
8. Jan 2009 qu. 7
(i) The operation * is defined by $x * y=x+y-a$, where x and y are real numbers and a is a real constant.
(a) Prove that the set of real numbers, together with the operation *, forms a group.
(b) State, with a reason, whether the group is commutative.
(c) Prove that there are no elements of order 2.
(ii) The operation \circ is defined by $x \circ y=x+y-5$, where x and y are positive real numbers. By giving a numerical example in each case, show that two of the basic group properties are not necessarily satisfied.
9. June 2008 qu. 1
(a) A cyclic multiplicative group G has order 12. The identity element of G is e and another element is r, with order 12 .
(i) Write down, in terms of e and r, the elements of the subgroup of G which is of order 4.
(ii) Explain briefly why there is no proper subgroup of G in which two of the elements are e and r.
(b) A group H has order $m n p$, where m, n and p are prime. State the possible orders of proper subgroups of H.
10. June 2008 qu. 6

The operation \circ on real numbers is defined by $a \circ b=a|b|$.
(i) Show that \circ is not commutative.
(ii) Prove that \circ is associative.
(iii) Determine whether the set of real numbers, under the operation \circ, forms a group.
11. Jan 2008 qu. 1
(a) A group G of order 6 has the combination table shown below.

	e	a	b	p	q	r
e	e	a	b	p	q	r
a	a	b	e	r	p	q
b	b	e	a	q	r	p
p	p	q	r	e	a	b
q	q	r	p	b	e	a
r	r	p	q	a	b	e

(i) State, with a reason, whether or not G is commutative.
(ii) State the number of subgroups of G which are of order 2.
(iii) List the elements of the subgroup of G which is of order 3 .
(b) A multiplicative group H of order 6 has elements $e, c, c^{2}, c^{3}, c^{4}, c^{5}$, where e is the identity. Write down the order of each of the elements c^{3}, c^{4} and c^{5}.
12. Jan 2008 qu. 8

Groups A, B, C and D are defined as follows:
A : the set of numbers $\{2,4,6,8\}$ under multiplication modulo 10 ,
B : the set of numbers $\{1,5,7,11\}$ under multiplication modulo 12 ,
C : the set of numbers $\left\{2^{0}, 2^{1}, 2^{2}, 2^{3}\right\}$ under multiplication modulo 15 ,
D : the set of numbers $\left\{\frac{1+2 m}{1+2 n}\right.$, where m and n are integers $\}$ under multiplication.
(i) Write down the identity element for each of groups A, B, C and D.
(ii) Determine in each case whether the groups
A and B,
B and C,
A and C
are isomorphic or non-isomorphic. Give sufficient reasons for your answers.
(iii) Prove the closure property for group D.
(iv) Elements of the set $\left\{\frac{1+2 m}{1+2 n}\right.$, where m and n are integers $\}$ are combined under addition. State which of the four basic group properties are not satisfied. (Justification is not required.)
13. June 2007 qu. 4

Elements of the set $\{p, q, r, s, t\}$ are combined according to the operation table shown below.

	p	q	r	s	t
p	t	s	p	r	q
q	s	p	q	t	r
r	p	q	r	s	t
s	r	t	s	q	p
t	q	r	t	p	s

(i) Verify that $q(s t)=(q s)$.
(ii) Assuming that the associative property holds for all elements, prove that the set $\{p, q, r, s, t\}$, with the operation table shown, forms a group G.
(iii) A multiplicative group H is isomorphic to the group G. The identity element of H is e and another element is d. Write down the elements of H in terms of e and d.
14. June 2007 qu. 9

The set S consists of the numbers 3^{n}, where $n \in \mathbb{Z}$. \mathbb{Z} denotes the set of integers $\{0, \pm 1, \pm 2, \ldots\}$. $)$
(i) Prove that the elements of S, under multiplication, form a commutative group G. (You may assume that addition of integers is associative and commutative.)
(ii) Determine whether or not each of the following subsets of S, under multiplication, forms a subgroup of G, justifying your answers.
(a) The numbers $3^{2 n}$, where $n \in \mathbb{Z}$
(b) The numbers 3^{n}, where $n \in \mathbb{Z}$ and $n \geq 0$.
(c) The numbers $3^{\left(\pm n^{2}\right)}$, where $n \in \mathbb{Z}$
15. Jan 2007 qu. 1
(i) Show that the set of numbers $\{3,5,7\}$, under multiplication modulo 8, does not form a group.
(ii) The set of numbers $\{3,5,7, a\}$, under multiplication modulo 8 , forms a group. Write down the value of a.
(iii) State, justifying your answer, whether or not the group in part (ii) is isomorphic to the multiplicative group $\left\{e, r, r^{2}, r^{3}\right\}$, where e is the identity and $r^{4}=e$.
16. Jan 2007 qu. 5

A multiplicative group G of order 9 has distinct elements p and q, both of which have order 3 . The group is commutative, the identity element is e, and it is given that $q \neq p^{2}$.
(i) Write down the elements of a proper sub group of G
(a) which does not contain q,
(b) which does not contain p.
(ii) Find the order of each of the elements $p q$ and $p q^{2}$, justifying your answers.
(iii) State the possible order (s) of proper subgroups of G.
(iv) Find two proper subgroups of G which are distinct from those in part (i), simplifying the elements.
17. June 2006 qu. 1
(a) For the infinite group of non-zero complex numbers under multiplication, state the identity element and the inverse of $1+2 \mathrm{i}$, giving your answers in the form $a+\mathrm{i} b$.
(b) For the group of matrices of the form $\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$ under matrix addition, where $a \in \mathbb{R}$, state the identity element and the inverse of $\left(\begin{array}{ll}3 & 0 \\ 0 & 0\end{array}\right)$.
18. June 2006 qu. 8

A group D of order 10 is generated by the elements a and r, with the properties $a^{2}=e, r^{5}=e$ and $r^{4} a=a r$, where e is the identity. Part of the operation table is shown below.

	e	a	r	r^{2}	r^{3}	r^{4}	ar	$a r^{2}$	$a r^{3}$	$a r^{4}$
e	e		r				$a r$		$a r^{3}$	$a r^{4}$
a	a	e	ar		$a r^{3}$	$a r^{4}$				
r	r		r^{2}	r	r^{4}	e				
r^{2}	r^{2}		r^{3}	r^{4}	e	r				
r^{3}	r^{3}		r^{4}	e	r	r^{2}				
r^{4}	r^{4}	ar	e	r	r^{2}	r^{3}				
ar	$a r$			$a r^{3}$	$a r^{4}$	a				
$a r^{2}$	$a r^{2}$		$a r^{3}$	$a r^{4}$	a	$a r$				
$a r^{3}$	$a r^{3}$		$a r^{4}$	a	ar	$a r^{2}$				
$a r^{4}$	$a r^{4}$				$a r^{2}$	$a r^{3}$				

(i) Give a reason why \boldsymbol{D} is not commutative.
(ii) Write down the orders of any possible proper subgroups of D.
(iii) List the elements of a proper subgroup which contains
(a) the element a, [1]
(b) the element r.
(iv) Determine the order of each of the elements $r^{3}, a r$ and $a r^{2}$.
(v) Copy and complete the section of the table marked \mathbf{E}, showing the products of the elements $a r, a r^{2}, a r^{3}$ and $a r^{4}$.
19. Jan 2006 qu. 2

The tables shown below are the operation tables for two isomorphic groups G and H.

G	a	b	c	d
a	d	a	b	c
b	a	b	c	d
c	b	c	d	a
d	c	d	a	b

H	2	4	6	8
2	4	8	2	6
4	8	6	4	2
6	2	4	6	8
8	6	2	8	4

(i) For each group, state the identity element and list the elements of any proper subgroups.m [4]
(ii) Establish the isomorphism between G and H by showing which elements correspond.
20. Jan 2006 qu. 7

A group G has an element a with order n, so that $\mathrm{a}^{n}=\mathrm{e}$, where e is the identity. It is given that x is any element of G distinct from a and e.
(i) Prove that the order of $x^{-1} a x$ is n, making it clear which group property is used at each stage of your proof.
(ii) Express the inverse of $x^{-1} a x$ in terms of some or all of x, x^{-1}, a and a^{-1}, showing sufficient working to justify your answer.
(iii) It is now given that a commutes with every element of G. Prove that a^{-1} also commutes with every element.

